ABOUT ME
Bonifacio Martín-del-Brío es Profesor Titular de Universidad desde 2007. Pertenece al Departamento de Ingeniería y Comunicaciones de la Universidad de Zaragoza. Ha trabajado siempre en temas relacionados con el procesamiento inteligente de datos, participando en múltiples proyectos multidisciplinares, aportando en ellos sus conocimientos sobre redes neuronales y machine learning.
Licenciado en Ciencias Físicas (1989), realizó su doctorado en Ingeniería Electrónica (1994), recibiendo el Premio extraordinario de doctorado de la Universidad de Zaragoza (1995). Para realizar la Tesis doctoral recibió una beca de investigación competitiva del Gobierno de Aragón.
En 1999 consiguió una plaza de Profesor Titular de Escuela Universitaria y en 2007 de Profesor Titular de Universidad.
Tiene en la actualidad tres sexenios de investigación. Ha realizado estancias docentes y de investigación en la Universidad de Malmö (Suecia) y en el Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas CIEMAT (Madrid).
Tiene más de 100 publicaciones en revistas y congresos. Artículos indexados: 6 Q1, 4 Q2, 3 Q3, 4 Q4, algunas en revistas tan relevantes como IEEE Transactions on Industrial Electronics.
Ha dirigido tres Tesis doctorales.
Ha desarrollado diversas tareas de gestión universitaria, como por ejemplo miembro del Claustro de la Universidad de Zaragoza, Coordinador de Área y miembro de la dirección de la Escuela de Ingeniería y Arquitectura (Coordinador de Grado), entre otras.
Hitos destacables:
- Es autor del libro “Redes neuronales y sistemas borrosos”, que fue prologado por el catedrático de la Universidad de Berkeley Lofti Zadeh, padre de la lógica borrosa; editado en Madrid y México (1997, 2000 y 2006), tiene cientos de citas.
- Ha aportado sus conocimientos en machine learning en proyectos relacionados con temas diversos, como la predicción de demanda eléctrica (colaboración con ENDESA), estimación de oleaje (colaboración con Puertos del Estado, Intel y Nologin),
- Su trabajo pionero (1990’s) de la aplicación de redes neuronales a la predicción de quiebras bancarias, en colaboración con el Depto. de Contabilidad y Finanzas de la UZ, cuenta con más de 300 citas (incluyendo el Banco Mundial).
- Su trabajo relativo a incluir inteligencia en cocinas de inducción ha sido premiado por el grupo Bosh-Siemens Homeappliances, BSH, y patentado por BSH (world patent 2014P01387ES).
Otros méritos relevantes:
- Desde 2018 es Director de la Cátedra SICE de la Universidad de Zaragoza.
- 2013 Best paper award by the IEEE Industrial Electronics Society (Electrical Machine Technical Committee)
- 2012 Premio de la Cátedra BSH.
- 2001 Premio de la Fundación 3M – IV Innovation Awards (“System for moving patterns identification”).
- 1995 Premio Extraordinario de Doctorado (Áreas Técnicas), UZ.
- 1993 Premio del Seminario Interdisciplinar de la UZ
- Miembro permanente de Comités de Congresos: International Work-Conference on Artificial Neural Networks IWANN, TAEE (Tecnologías para Enseñanza de la Electrónica) and SAAEI (Seminario Anual Automática y Electrónica Industrial).
- Revisor de diversas revistas internacionales.
PUBLICATIONS
2020
Guillén-Asensio, A; Sanz-Gorrachategui, I; Pastor-Flores, P; Artal-Sevil, J S; Bono, Antonio; Brío, Bonifacio Martín; Bernal-Ruiz, C
Battery state prediction in photovoltaic standalone installations Proceedings Article
In: 2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp. 1-6, 2020.
@inproceedings{9243111,
title = {Battery state prediction in photovoltaic standalone installations},
author = {A Guillén-Asensio and I Sanz-Gorrachategui and P Pastor-Flores and J S Artal-Sevil and Antonio Bono and Bonifacio Martín Brío and C Bernal-Ruiz},
doi = {10.1109/EVER48776.2020.9243111},
year = {2020},
date = {2020-09-01},
booktitle = {2020 Fifteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)},
pages = {1-6},
abstract = {Effective energy treatment is one of the challenges to which scientists are devoting more interest and resources. Currently, there is a need to optimize the generation of energy by renewable methods and to improve the storage and management of battery cells. One of these emerging lines aims to face the problem of uncertainty that exists in the generation of energy in photovoltaic installations. In this paper, we proposed to use machine learning methods to predict the state (voltage) of the batteries at several days into the future. The results obtained from two recurrent neural networks such as NARX and LSTM are compared, getting good results with both. Two approaches are considered: sample-based prediction and pattern-based forecasting.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
2019
Pérez-Cebolla, Francisco Jose; Martinez-Iturbe, Abelardo; Brío, Bonifacio Martín; Bernal-Ruiz, Carlos; Artal-Sevil, Jesús Sergio; Pastor-Flores, Pablo
Nonlinear Dynamic Equivalent Circuit of a Switched Reluctance Motor Considering Core Losses and Leakage Inductance Proceedings Article
In: IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 1222-1227, 2019, ISSN: 2577-1647.
@inproceedings{8927236,
title = {Nonlinear Dynamic Equivalent Circuit of a Switched Reluctance Motor Considering Core Losses and Leakage Inductance},
author = {Francisco Jose Pérez-Cebolla and Abelardo Martinez-Iturbe and Bonifacio Martín Brío and Carlos Bernal-Ruiz and Jesús Sergio Artal-Sevil and Pablo Pastor-Flores},
doi = {10.1109/IECON.2019.8927236},
issn = {2577-1647},
year = {2019},
date = {2019-10-01},
booktitle = {IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society},
volume = {1},
pages = {1222-1227},
abstract = {In this paper a nonlinear dynamic lumped circuit model of a switched reluctance motor is proposed. This model includes the effect of core losses and leakage inductance. The parameters of the nonlinear circuit are identified from the experimental flux linkage and phase current. The proposed model, compared to other available static models, allows the coupling between electrical and mechanical phenomena and, therefore, it is suitable for the characterization of the full rotating behaviour of the motor. This nonlinear model is based on the space-state framework and it is implemented in Matlab-Simulink. Model accuracy has been verified at both, constant speed and accelerating; the correct fit between the model and a real switched reluctance machine is shown. The accurate fit of the stator waveform obtained in model simulations with experimental measurements proves both, the accuracy of the proposed model and the correct estimation of its components. All these parameters are non-linearly dependent on the current and the actual rotor position.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Pastor-Flores, Pablo; Bernal-Ruiz, Carlos; Sanz-Gorrachategui, Iván; Bono, Antonio; Brío, Bonifacio Martín; Artal-Sevil, Jesús Sergio; Perez-Cebolla, Francisco J
Analysis of Li-ion battery degradation using self-organizing maps Proceedings Article
In: IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, pp. 4525-4530, 2019, ISSN: 2577-1647.
@inproceedings{8926907,
title = {Analysis of Li-ion battery degradation using self-organizing maps},
author = {Pablo Pastor-Flores and Carlos Bernal-Ruiz and Iván Sanz-Gorrachategui and Antonio Bono and Bonifacio Martín Brío and Jesús Sergio Artal-Sevil and Francisco J Perez-Cebolla},
doi = {10.1109/IECON.2019.8926907},
issn = {2577-1647},
year = {2019},
date = {2019-10-01},
booktitle = {IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society},
volume = {1},
pages = {4525-4530},
abstract = {This paper proposes a new methodology to identify the different degradation processes of Li-Ion battery cells. The goal of this study is to determine if different degradation factors can be separated by waveform analysis from aged cells with similar remaining capacity. In contrast to other works, the proposed method identifies the past operating conditions in the cell, regardless of the actual State of Health. The methodology is based on a data-driven approach by using a SOM (Self-organizing map), an unsupervised neural network. To verify the hypothesis a SOM has been trained with laboratory data from whole data cycles, to classify cells concerning their degradation path and according to their discharge voltage patterns. Additionally, this new methodology based on the SOM allows discriminating groups of cells with different cycling conditions (based on depth of discharge, ambient temperature and discharge current). This research line is very promising for classification of used cells, not only depending on their current static parameters (capacity, impedance), but also the battery use in their past life. This will allow making predictions of the Remaining Useful Life (RUL) of a battery with greater precision.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Pastor-Flores, P; Brío, Bonifacio Martín; Bono, Antonio; Ruiz, C Bernal; Gorrachategui, I Sanz; Pérez-Cebolla, FJ
Clasificación de patrones de envejecimiento en baterías mediante SOM Conference
2019.
@conference{pastorclasificacion,
title = {Clasificación de patrones de envejecimiento en baterías mediante SOM},
author = {P Pastor-Flores and Bonifacio Martín Brío and Antonio Bono and C Bernal Ruiz and I Sanz Gorrachategui and FJ Pérez-Cebolla},
year = {2019},
date = {2019-07-03},
keywords = {},
pubstate = {published},
tppubtype = {conference}
}
Gorrachategui, Iván Sanz; Flores, Pablo Pastor; Bono, Antonio; Brío, Bonifacio Martín; Ruiz, Carlos Bernal
Mapas Auto-Organizados (SOM) para la detección de envejecimiento en baterías Journal Article
In: Jornada de Jóvenes Investigadores del I3A, vol. 7, 2019.
@article{gorrachategui2019mapas,
title = {Mapas Auto-Organizados (SOM) para la detección de envejecimiento en baterías},
author = {Iván Sanz Gorrachategui and Pablo Pastor Flores and Antonio Bono and Bonifacio Martín Brío and Carlos Bernal Ruiz},
doi = {10.26754/jji-i3a.003609},
year = {2019},
date = {2019-01-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {7},
keywords = {},
pubstate = {published},
tppubtype = {article}
}